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a b s t r a c t

This paper presents a rapid and reliable approach to solve inverse problems of parameter estimation for
structural systems using reduced-basis method (RBM). A reduced-basis model is first developed with
asymptotic error estimation and is used for fast computation of solving forward mechanics problems
of solids and structures. A genetic algorithm (GA) is then used in the inverse search procedure for param-
eter estimation. The approach is applied to a typical inverse problem of estimating the crack location,
length and orientation inside a cantilever beam. The displacements measured at five points on the lower
surface of the beam which can also be evaluated by our fast RBM solver are used as inputs for construct-
ing objective functions of error. The genetic algorithm is used to search these parameters of the crack
inside cantilever beam that minimize the objective function. An example has been presented. It is found
that the estimated results are very accurate and reliable due to the use of RBM forward model with an
effective and robust error estimation and detailed sensitivity analysis. The present procedure is 460 times
faster than the full FEM model used inverse procedure.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Identification of unknown parameters in solid and structure
systems based on measurements or observations plays a very
important role in engineering practical applications. Detection of
cracks in structural components is one of the most important prob-
lems in the area of non-destructive evaluation (NDE) because hid-
den cracks are often the key cause of unforeseeable structural
failures. Therefore, many research works have been carried out to
develop the effective and systematical approach for identifying
invisible cracks somewhere inside the structural components.
Inverse analysis is such a systematic approach. To develop a prac-
tical and systematic approach for inverse analysis, three key issues
need to be resolved.

First, a sufficiently fast ‘‘forward” solver is needed. An inverse
analysis technique requires usually a huge number (usually tens
of thousands) of ‘‘forward” analyses that predict the response of
a structural component with a ‘‘guessed” crack. For most problems
of solid structures, the standard numerical approach of FEM [1] is
often used as a forward solver, and such a FEM run is usually very
time-consuming. As an inverse analysis requires many times of
FEM runs, the total CPU time for computing an inverse problem
ll rights reserved.

65 67791459.
can be unbearably long. This is, in fact, widely regarded as the bot-
tle neck of solving such an inverse problem in practice [2].

To avoid very long computation time, exploring the fast forward
computational solver is critical in conducting feasible inverse anal-
ysis. One fast computation technique is called model order reduc-
tion (MOR) [3,4] which is used for many applications such as
damage detection and flaws in structures [5,6]. Another fast com-
putational method such as the reduced-basis method (RBM) with
error bound technique [7–9] is capable of solving forward mechan-
ics problems of solids and structures rapidly and accurately.
Prud’homme et al. [7] introduced the reduced-basis method with
a rigorous reduced-basis error bound and asymptotic error bound.
This work reviewed the usefulness of reduced-basis method for
compliance output of coercive heat conduction problem and
non-compliance output of truss structure problems. Recently,
reduced-basis method has also found its application to solve a
broader class of PDEs. For example, Nguyen [9] has developed an
‘‘inf–sup” reduced-basis error bound for non-affine and non-linear
PDEs, and applied for inverse problems. The reduced-basis method
and its rigorous error bound could be effectively applicable to the
parameterized steady incompressible Navier–Stokes equations
[10]. In addition, Grepl et al. [11] presented a posteriori error
bound for reduced-basis approximations of parametrized para-
bolic partial differential equations. Sen et al. [12] also reported
‘‘natural norm” of reduced-basis error estimation for coercive and
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Fig. 1. A cantilever beam with a crack.
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non-coercive linear elliptic partial differential equations. Addition-
ally, Rozza [13] articulated the application of reduced-basis
method to Navier–Stokes equations and analyzed the stability of
reduced-basis method with the aid of an equivalent ‘‘inf–sup”
condition. Further applications of the reduced basis method were
also found for the case of Boltzmann equation [14] and stress
intensity factor analysis [15]. The basic methodology and develop-
ments of reduced-basis technology can also be found at http://
augustine.mit.edu.

The second key issue is the ill-posedness of the inverse prob-
lems. The most effective and reliable way to deal with this issue
is to have the inverse problem ‘‘over-posed” to ensure the defined
error objective function being sufficiently sensitive with respect to
the measurement error [2]. To ensure the reliability of inverse
solution, one often needs to perform a thorough sensitivity analy-
sis using the forward solver to explore the parameter domain. Such
an exploration often requires a large number of forward analyses.
Therefore, an effective forward solver is again critical to deal with
this issue.

The third key issue in developing a practical and systematic
approach for inverse analysis is the robustness and efficiency of
the inverse solver. Usually, an inverse problem is formulated as
a minimization of an error function that is generally non-linear
and implicit function of parameters to be estimated. Optimization
techniques [2] such as direct search algorithm, gradient-base
algorithm, genetic algorithm (GA) including simple GA, micro-
GA, intergeneration projection genetic algorithm (IP-GA) need to
be used as an inverse searching methodology. Genetic algorithm
[16] is one of the most efficient and robust inverse searching pro-
cedures for complex non-linear inverse problems, due to the
‘‘global” searching nature and discrete formulation. GA can be
used alone or together with other type of optimization tech-
niques. For example, an inverse procedure using combination of
genetic algorithm and non-linear least square method for material
characterization of composite laminar plate is proposed [17].
Yang et al. [18] reported an inverse approach for detection of
crack in laminates by using micro-GA and integral strain of opti-
cal fibers. Wu et al. [19] proposed a non-destructive evaluation
(NDE) procedure to detect the location and the length of the crack
in an isotropic plate using elastic waves governed by the differen-
tial equation of wave propagation. The uniform micro-GA was
employed for inverse searching. Liu et al. [20] articulated an in-
verse technique, for material characterization of composite plates,
based on real-micro-GA which treated the dynamic response on
the composite plate surface as an input. A material characteriza-
tion technique of laminated cylindrical shell using uniform mi-
cro-GA is also articulated [21]. An intergeneration projection
genetic algorithm (IP-GA) was proposed for inverse parameter
characterization of heat convection constants [22]. In addition,
the genetic algorithm (GA) was also implemented to perform flaw
detection in sandwich plate [23]. In the study, the time-harmonic
response of sandwich plate was evaluated by FEM and used as
‘‘input” of GA. From the earlier studies, it has been found that
the genetic algorithm techniques are very effective in many in-
verse applications. It is because the genetic algorithm (GA) re-
quires only the evaluating objective function on top of its
simplicity and robustness, while many inverse searching proce-
dures require evaluation of objective error functions as well as
additional information such as the derivatives of objective func-
tion that can be very complex and non-linear in nature. For these
reasons, the GA is often preferred to be used alone in order to
keep all these good features. On the other hand, GA usually re-
quires a large times of forward analysis. Hence fast forward solv-
ers are needed. The combination of real-time forward model
(such as RBM models) and an inverse GA technique, so-called
RBM-GA, is proposed in this work for inverse problems.
In order to develop a fast forward solver in this work, a RBM
model with an asymptotic error estimation that ensures the accu-
racy of the forward solution is first built. A sensitivity analysis is
then conducted using RBM model to determine the search domain
of parameters ensuring the reliability of the inverse solution. The
genetic algorithm is then implemented for inverse identification
of the parameters of the problem. An example of crack detection
in a cantilever beam is presented to demonstrate the efficiency
of the proposed inverse analysis approach. It is found that the
RBM model with the asymptotic error estimation can reduce the
CPU time significantly and is an ideal forward model for reliable
and robust inverse analysis together with GA for global searching.

2. Reduced-basis approximation

2.1. Problem definition

We consider a two-dimensional linear elasticity problem of a
cantilever beam containing an oblique crack. The crack length is
denoted by L, the inclined angle is h and the position of the crack
center is b as shown in Fig. 1. For simplicity, we assume that the
crack is located in the middle plane of the beam: a typical case
of shear induced cracking. The material of the beam is isotropic
with unit density, unity Young modulus and Poisson ratio of
m = 0.25. The physical domain of the problem X 2 R2 is shown in
Fig. 1, and the plane stress problem is considered. We apply Dirich-
let boundary conditions on the boundary CD, pressure (normal
traction) on the top boundary CT and on the bottom boundary
CB, and zero traction (an open crack) on the surface of the crack
CC, and the right edge CR.

The task is to determine the three unknown parameters
l � (b,L,h) from the ‘‘measured” displacement responses of the
beam. We first assume l 2 D ¼ ½1:5;2:5� � ½0:3;0:7� � ½15�;75�� �
R3. The displacements at the positions of I1, I2, I3, I4 and I5, shown
in Fig. 1, are the five outputs of ‘‘measurement” for our inverse
analysis.

For a given parameter l 2 D � R3, following [7] the weak for-
mulation for the ‘‘exact” problem governed by partial differential
equations can be expressed as

aðuðlÞ; t; lÞ ¼ f ðtÞ 8t 2 Xe; ð1Þ

where Xe is a proper Hilbert space. The outputs can be expressed by

siðlÞ ¼ ‘iðuðlÞÞ; 1 6 i 6 5; ð2Þ

where a(u(l),t;l) is l-parameterized bilinear functional, f and ‘ are
l-parameterized linear functional, and si(l), 1 6 i 6 5, are the five
interest displacements or outputs of the cantilever beam.

We next define parametric affine mapping which separates
bilinear form of a(x,t;l) to parameter-independent parts and
parameter-dependent parts:

aðx; t; lÞ ¼
XQ

q¼1

HqðlÞaqðx; tÞ; ð3Þ

http://augustine.mit.edu
http://augustine.mit.edu
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where 1 6 q 6 Q, Hq(l) are an affine function of l 2 D � R3, and
aq(x,t) are l-independent bilinear form. The parametric affine map-
ping is crucial for formulating the affine parameter decomposition.

2.2. Finite element approximation

For the problem defined above, obtaining the exact solution is
not generally possible. Therefore, we shall use a discretized ‘‘truth”
finite element solution uh(l) in space Xh of very large dimension @
in place of the exact solution. We expect, based on the standard
FEM theory [1,24], that uh(l) ? u(l) when Xh ? Xe as @ ! 1,
meaning that the FE solution will approach to the exact solution
when the number of elements approaches to infinity. The FE
approximation of the exact solution of displacement uh(l) satisfies:

aðuhðlÞ; t; lÞ ¼ f ðtÞ 8t 2 Xh ð4Þ

for a given l 2 D.
We then calculate the outputs that can be conveniently mea-

sured in experiments in the following form:

shiðlÞ ¼ ‘iðuhðlÞÞ; 1 6 i 6 5: ð5Þ

Note that the outputs are not compliant for the practical constraints
in the experiments of inverse analysis. As shown in Fig. 2, the FEM
mesh used in our work consists of quadratic triangular elements
with total degree of freedom of @ ¼ 29;480 which is rich enough
for the FE solution uh(l) to approximate exact solution u(l) for this
problem because the outputs are far away from the crack tips.
Otherwise, proper measures are needed to accurately capture the
singularity field near the crack tip. We next plug the affine mapping
given in Eq. (3) into the weak form of the partial differential equa-
tion to obtain affine parameter decomposition.

2.3. Reduced-basis approximation

As the dimension of FEM approximation space is very large, the
evaluation of uh(l) and si(l) by Eqs. (4) and (5), will be very expen-
sive for any engineering problem of even a normal size. We shall
next present our choice of reduced-basis approximation [7] to re-
duce the computation time and cost in the ‘‘online” inverse analy-
sis. Firstly, a sample set in the parameter space, SN = {l1 2 D,
. . .,lN 2 D}, is introduced, where l 2 D � R3, and then define the
reduced-basis space WN = span{uh(l1), . . .,uh(lN)} where uh(li),
1 6 i 6 N, is obtainable by solving Eq. (4) ‘‘offline”. The reduced-ba-
sis approximation of the ‘‘exact” solution, for a given l 2 D, is then
given by

aðuNðlÞ; t; lÞ ¼ f ðtÞ 8t 2WN: ð6Þ

The corresponding outputs can be given by

sNiðlÞ ¼ ‘iðuNðlÞÞ; 1 6 i 6 5: ð7Þ

In the reduced-basis method, we apply the so-called offline–online
computational procedure that consists of an offline stage building
0 0.5 1 1.5 2
0

0.5

1

Fig. 2. Triangular mesh of quadratic finite element on t
RBM model, and an online stage that produces required solution
in ‘‘real” time. The computation at the offline stage is independent
of l 2 D � R3 and that at the online stage depends on l 2 D � R3.
The offline computation requires N times of finite element analyses
of large dimension @, and hence is very expensive. However, it is
only required to be done once for a given problem. The online stage,
which is independent of @, requires O(N3) operations [8,9,12] to ob-
tain the reduced-basis solutions, and hence very efficient, virtually
in real-time. The offline–online decomposition thus helps in for-
ward analysis to reduce computational cost significantly, which is
critical in the inverse analysis process.

In constructing reduced-basis space WN, it should be noted that
the bases of WN must be linearly independent in order to obtain the
well-conditioned RBM algebraic equations. However, it is possible
that li 2 SN, i = 1, . . .,N, can be very close to each other in the
parameter space D especially when N is very large; thus the re-
duced-bases of the FEM solution uh(li) 2WN, li 2 SN, could be close
to being linearly dependent. As a result, the matrix of RBM model
can be bad-conditioned. To overcome the bad-conditioned in the
matrix, the Gram–Schmidt orthogonalization is applied to orthog-
onalize the bases of WN to build our RBM model [9].

2.4. Asymptotic error estimation

The use of RBM significantly increases the efficiency of solving
forward problems. However, the error in the solution introduced
by the use of RBM has to be properly quantified before they can
be fed into an inverse solver. Hence an error estimation based on
an asymptotic error estimation technique [7] is presented here.
We first define an alternate ‘‘M” sample set in the parameter space,
SM = {l1 2 D, . . .,lM 2 D}, and set M = 2N. The associated ‘‘doubled”
reduced-basis space becomes WM = span{uh(l1), . . .,uh(lM)}. We
intentionally set SN � SM and thus we can anticipate WN �WM. As
a result, the ‘‘M” reduced-basis solution uM(l) is expected to be
much closer to uh(l) than uN(l), and thus sM(l) is closer to sh(l)
than sN(l) due to fast convergence rate of the reduced-basis
approximation [7].

We now define the estimated error of RBM solution as

Ds
N;MðlÞ ¼

jsMðlÞ � sNðlÞj
jsMðlÞj

: ð8Þ

To assert the quality of the asymptotic error estimation, we further
define the ‘‘exact” error as

Ds
N;exactðlÞ ¼

jshðlÞ � sNðlÞj
jshðlÞj

: ð9Þ

Based on the convergence property of the RBM and the asymptotic
error bound [7,8], we can anticipate that Ds

N;MðlÞ � Ds
N;exactðlÞ.

It is noted that although this particular error estimation is not rig-
orous, it is simple and can represent the exact error well. Most
importantly, it works very efficiently for non-compliant outputs,
in terms of both fast-computation and very close-to-unit effectivity.
2.5 3 3.5 4

he reference domain with the crack in the middle.
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Therefore, it is very suitable for our inverse problem. We note that
the error estimation is inexpensive since it depends only on N that
is much smaller than @.

2.5. Greedy adaptive procedure

An important ingredient of RBM is the greedy adaptive proce-
dure which selects the RB sample set SN as effective as possible.
Our goal is now to build an optimal sample SN and consequently
to form the reduced-basis space WN. The greedy adaptive proce-
dure [13–15] is thus briefed here on the selection of li,
i = 1, . . .,Nmax, which are the entries of RB sample set SN.

To start the greedy algorithm, a sample set DP is created in a
pre-defined regular grid pattern over the entire parameter domain
D and the sampling points li can then be chosen in DP � D. The RB
sample sets SN = {l1} and SM = {l1,l2}, where l1 and l2 are randomly
selected from DP, are introduced to form WN and WM. The mini-
mum error tolerance etol is set as the criterion for the termination
of the greedy adaptive procedure. The asymptotic errors Ds

N;MðlÞ
(see in Eq. (8)) "l 2 DP, are then computed. The sample point
lmax ¼ arg maxl2DP D

s
N;MðlÞ is then chosen. The new RB sample sets

are then formed as

SNþ1 ¼ SN [ lmax and SMþ1 ¼ SM [ lmax: ð10Þ

Based on SN+1 and SM+1, the RB spaces WN+1 and WM+1 are con-
structed. Since M should be 2N, an extra sample point denoted by
l̂ is necessary to form WM+2. The sample point l̂ is chosen as fol-
lows. The asymptotic errors of:

Ds
M;Mþ1ðlÞ ¼

jsMþ1ðlÞ � sMðlÞj
jsMþ1ðlÞj

8l 2 DP; ð11Þ

are firstly evaluated and then l̂ ¼ arg maxl2DP D
s
M;Mþ1ðlÞ is deter-

mined. Note that sM(l) is the RB output of WM and sM+1(l) is the
RB output of WM+1. The SMþ2 ¼ SMþ1 [ l̂ is then formed and conse-
quently WM+2. A circle of greedy algorithm is completed, and the
next circle of algorithm is ready to begin by setting SN = SN+1 and
SM = SM+2.

The algorithm is carried out until we have got the ‘‘optimal”
sample sets SNmax and SMmax and Ds

N;MðlmaxÞ 6 etol. The construction
of SN ¼ SNmax and the associated space WN ¼WNmax are completed.
In this work, we set desired error tolerance etol = 10�3. It means
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Fig. 3. Distribution of reduced-basis sample set SN obtained by adapt
that N = Nmax is chosen when Ds
N;M;max 6 10�3. This is to ensure that

the error in our forward RBM model is 10 times smaller than the
assumed 1% error in the experiments for measuring the
displacements.

Note that in the above greedy algorithm, a situation termed
‘‘sample-overlapping” situation has arisen. To explain this, we con-
sider a step of the greedy procedure with SN and SM: the sampling
point lmax ¼ arg maxl2DP D

s
N;MðlÞ can be a member of SM (not SM+1 or

SM+2). It indicates that lmax overlaps with li 2 SM, i = 1, . . .,M. This is
the ‘‘sample-overlapping” situation, and could be encountered fre-
quently during the greedy adaptive procedure. Under this condi-
tion, Eq. (10) is replaced by

SNþ1 ¼ SN [ lmax and SMþ1 ¼ SM [ ~l; ð12Þ

where ~l ¼ arg maxl2DPnSM Ds
N;MðlÞ. Note that ~l is the sample point at

which the error is maximum within the domain DPnSM.
Under the ‘‘sample-overlapping” situation, the asymptotic error

estimation Ds
N;MðlmaxÞ ¼ Ds

N;exactðlmaxÞ as the RBM can provide the
‘‘truth” FEM solution for all the sampling points in the RB sample
set, sM(lmax) = sh(lmax). Hence, it is impossible to compare our
asymptotic error estimation with the exact error at each lmax of
the greedy procedure. For the comparison of errors, we shall intro-
duce a random parameter set Stest � [1.5,2.5] � [0.3,0.7] �
[15�,75�]. We can then choose the averaged errors over the entire
Stest:

Ds
N;M;avg ¼

Pntest
i¼1 Ds

N;Mðli
testÞ

ntest
and Ds

N;exact;avg ¼
Pntest

i¼1 Ds
N;exactðli

testÞ
ntest

;

ð13Þ

where li
test 2 Stest, i = 1, . . .,ntest, and Ds

N;Mðli
testÞ and Ds

N;exactðli
testÞ are

evaluated using Eqs. (8) and (9), respectively. Note that the ran-
domly selected parameter set Stest is used only for the examination
of the asymptotic error estimation.

2.6. Numerical result and discussion

A regular sampling grid of 17 � 17 � 17 for parameters
l � (b,L,h) of DP � D is used in the greedy adaptive procedure. Re-
call that the desire accuracy is set to etol = 10�3. Our greedy algo-
rithm found Nmax = 93. The distribution of sample set SN is shown
.5

2

2.5

b

ive sampling procedure using the greedy algorithm (Nmax = 93).
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in Fig. 3. The convergence of the outputs as a function of N is plot-
ted in Fig. 4.

For convergence and comparison study, a parameter set Stest

with sample size of ntest = 500 is randomly selected over the
parameter domain D: the averaged output errors Ds

N;M;avg and
Ds

N;exact;avg for the five outputs are evaluated over the entire Stest.
The convergence of the averaged outputs as a function of N are
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Fig. 5. Comparison between the averaged asym
plotted in Figs. 5–9. Note that because of the greedy procedure
used, the maximum asymptotic and ‘‘exact” errors will have no dif-
ference. Therefore, in Figs. 4–9, we plotted the averaged asymp-
totic error and the averaged ‘‘exact” error in Stest for comparison.
It is clearly shown that the averaged asymptotic error estimation
is in excellent agreements with the averaged ‘‘exact” error for
N P 60. We further provide the maximum error difference of
60 80 100
N
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ptotic and exact output error for output 1.
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jDs
N;MðlmaxÞ � Ds

N;exactðlmaxÞj over the entire parameter set Stest 2 D,
and evaluate the effectivity g ¼ Ds

N;MðlmaxÞ=Ds
N;exactðlmaxÞ, at the

greedy step of Nmax = 93. We found that jDs
N;MðlmaxÞ�

Ds
N;exactðlmaxÞj is 2.5 � 10�5 and g = 1.03 � 1 which show that the

asymptotic error estimation is very effective.
The online computational costs for RBM output sN(l), RBM error
DS

N;MðlÞ and the computational cost of sh(l) using the full FE model
are recorded in Table 1. It is noted that RBM is very effective in
solving forward problems rapidly and the RBM model presented
here is ready as a fast forward solver for our inverse problem.
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3. Inverse procedure

Recall that the aim of this paper is rapid identification of the
crack parameters (i.e. crack location ‘b’, the crack length ‘L’ and
the orientation of the crack ‘h’ shown in Fig. 1). The RBM model
presented above is applied as a forward model to solve inverse
problem. A brief outline for the inverse procedure for solving our
problem is as follow. We first define the objective function of error,
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and it is simply the sum of the squares of the differences between
computed displacements and the ‘‘measured” displacements at the
five locations:

gðlÞ ¼
X5

i¼1

ððsiðlÞÞC � ðsiðltrueÞÞ
MÞ2; ð14Þ

where (si(l))C and (si(ltrue))M, 1 6 i 6 5, are the computed displace-
ments of the underlined forward problem, and the actual experi-
mental ‘‘measurements” of responses of the solids or structures,
respectively. The required parameters are then identified by mini-
mizing the objective function using GA:

l	 ¼ arg min
l2D

gðlÞ
� �

: ð15Þ

Note that the objective function is very complex, implicit in l, non-
linear in nature, having multiple minima, and the experimental
measurements of responses can be erroneous.
i = i + 1 

Input “measured” displacements ( )( )M

trues μ  with 

( ), ,true b Lμ θ=

Determine: “Objective Function”, ( )μf

Create new individuals/populations of ith generation 

Evaluate: ( )μf

Condition check: 
i equal to nmax ?

or
Convergence tests

“Selection operation” 

“Crossover operation” 

“Mutation operation”

End

No

Yes

Input “measured” displacements ( )( )M

trues μ  with 

( ), ,true b Lμ θ=

Determine: “Objective Function”, ( )μg

Create new individuals/populations of ith generation 

Evaluate: ( )μg

Condition check: 
i equal to nmax ?

or
Convergence tests
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Fig. 10. Flow chart of GA searching procedure.

Table 1
Online computation time to calculate sN(l), DS

N;MðlÞ, and sh(l)

N Online evaluation time for
outputs, sN(l) (s)

Online evaluation time for
error, DS

N;MðlÞ (s)
Total online
evaluation time (s)

30 1.25 � 10�3 2.82 � 10�3 4.07 � 10�3

60 2.73 � 10�3 8.75 � 10�3 11.48 � 10�3

80 4.21 � 10�3 15.26 � 10�3 19.47 � 10�3

93 5.40 � 10�3 20.35 � 10�3 25.75 � 10�3

FEM evaluation time for
shðlÞ ð@ ¼ 29;480Þ (s)

2483.83 � 10�3
3.1. Simulated measurements

To examine our RBM-GA procedure for inverse analysis, the
‘‘simulated” measurements are used to avoid conducting actual
experiments. We simply use the FEM forward model to compute
the displacements at the five observation points, and add in ‘‘arti-
ficial” randomly generated noise simulating the measurement er-
ror. The simulated measurements is defined by

ðsiðltrueÞÞ
M ¼ siðltrueÞ þ ðsiðltrueÞÞ

noise
; 1 6 i 6 5; ð16Þ

where si(ltrue) is FEM solution evaluated by Eq. (5), and hence
si(ltrue) � shi(ltrue), (si(ltrue))noise is the Gaussian noise generating
function defined by

ðsiðltrueÞÞ
noise ¼ siðltrueÞ � C � R; 1 6 i 6 5; ð17Þ

where C is the value to control the level of noise contamination, and
R is random number generated by using Box–Muller method [2],
R 2 [�1,1]. In our studies, the error control level, C, is set as 0.01,
0.03 and 0.05, which means that we perform our inverse problem
by using simulated measurements contaminated with 1%, 3% and
5% noise, respectively. Simulated measurements are used in place
of the actual measurements in the following inverse analysis.

3.2. Brief on procedure of GA

GA is stochastic (random) technique, and is composed of three
main operations; selection, crossover, and mutation operations
which are probabilistic in nature [2,16]. First an initial population
or generation of chromosomes (individuals) is randomly created.
The fitness value (objective function value) of each individual is
then evaluated. Next, GA finds the good individuals which possess
the best fitness values (minimum objective function values) in cur-
rent generation. The population for the next generation is pro-
duced from good individuals of the past generations and newly
(random) selected individuals. Note that individuals of current
generation are created by three main operations of GA to ensure
a ‘‘healthy” evolution with proper notations. Finally, the best indi-
vidual can be found, and GA searching is terminated. The flow
chart of GA inverse searching procedure is illustrated in Fig. 10
in which nmax represents the maximum number of generations
and i represents ith generation.

GA searching is usually very expensive because it may need
thousands of forward problem evaluations. Therefore, fast forward
computational solver is vital in applying GA for large scale prob-
lems. We have developed a very efficient RBM model for forward
analysis; hence the GA can be successfully applied together with
our RBM model to solve the inverse problem.

We now define the GA basic settings for our inverse problem.
Table 2 provides the requirements of GA operations including pop-
ulation size, maximum number of generations, probability for GA
operators and the criteria for convergence tests. Note that mini-
mum objective function value is set to infinity for the best possible
parameter. Also, the tournament selection and the intermediate
crossover schemes provided in Matlab environment are imple-
mented for convenience.
Table 2
GA settings used in the RBM-GA approach

Number Presentation of control parameter Value

1 Population size 60
2 Maximum number of generations (nmax) 100
3 Probability of crossover operation 0.2
4 Probability of mutation operation 0.2
5 Minimum objective function value (for convergence test) �1
6 Tolerance of objective function value (for convergence test) 10�7
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3.3. Sensitivity analysis

To ensure the reliability of inverse solution, we need to perform
a sensitivity analysis before using GA inverse procedure. The sensi-
tivity analysis determines the searching domain for the GA. We
now define

ftestðlÞ ¼
X5

i¼1

ððsiðlÞÞCÞ; ð18Þ
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as a function of l 2 D ¼ ½1:5;2:5� � ½0:3;0:7� � ½15�;75�� � R3 where
the RBM model is built.

Because the RBM model is extremely fast to run, we simply ex-
plore the above function of l over entire domain D. The schematic
representation for the sensitivity of the function ftest(l) is then
explicitly shown in Figs. 11–16. Figs. 11–13 present the effect of
each single parameter on ftest(l): (i) b with L = 0.5 and h = 45�, (ii)
L with b = 2.0 and h = 45�, and (iii) h with b = 2.0 and L = 0.5. In
addition, Figs. 14–16 highlight the effects of combination of the
2 2.1 2.2 2.3 2.4 2.5
b

t to parameter b (with L = 0.5 and h = 45�).
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t to parameter L (with b = 2.0 and h = 45�).
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two parameters on ftest(l): (i) b and L with h = 45�, (ii) b and h with
L = 0.5, and (iii) h and L with b = 2.0. From Figs. 11–16, it is found
that the function ftest(l) is sufficiently sensitive to parameters
b 2 [2.1,2.5], L 2 [0.5,0.7] and h 2 [15�,25�]. Therefore, the feasible
parameter searching domain is defined as DS = [2.1,2.5] �
[0.5,0.7] � [15�,25�] � D in which RBM-GA is capable of exploring
the reliable parameter estimation. We shall avoid performing
parameter estimation of l 2 DnDS as ftest(l) is insensitive in this do-
main DnDS in which the inverse problem will not be reliable be-
cause of the possibility of magnification of errors. Note that if the
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Fig. 14. Sensitivity of function ftest with resp
parameter fails within the domain DnDS, one has to change the
experimental strategy to improve the sensitivity there [2]. The in-
verse parameter estimation can be reliably carried out in DS. The
numerical results of inverse parameter estimation will be demon-
strated in following section.

3.4. Numerical example

Numerical solutions for our crack detection problem are
presented here. The simulated measurement of displacements
2 2.1 2.2 2.3 2.4 2.5
b

Select range of b

ect to parameters b and L (with h = 45�).
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(si(ltrue))M are generated first using Eq. (16) and the ‘‘known” ltrue

with Gaussian noise. Then, (si(l))C are computed using RBM model
with the ‘‘guessed-by-GA” l. In the RBM model, we use with
Nmax = 93 and DS

N;M;maxðlÞ < 10�3 that is much smaller than usual
experimental error of 1%, 3% and 5%.

Two cases of inverse analysis have been conducted. Tables 3
and 4 give estimated parameters l* for these two sets of true
parameters ltest�1 = (2.4,0.65,25�) and ltest�2 = (2.4,0.6,20�). The
simulated responses are contaminated with 0%, 1%, 3% and 5%
Gaussian noise. It is found that the estimated parameters are very
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Fig. 16. Sensitivity of function ftest with resp
accurate at different noise levels. The proposed RBM-GA gives reli-
able results with the maximum errors of less than 1% for noise-free
case, and less than 7% for 5% noise-contaminated case. We also
found that the position of the crack b and the crack length L are
not sensitive to contaminated noise level as they are very accurate
even when the noise level is 5%. Although the orientation of the
crack, h, is more sensitive to noise level than b and L, the estimated
results of h are satisfactorily accurate. Clearly, the present RBM-GA
procedure is very reliable if the search range is within ±20%
off from the actual parameter value. This search range should be
0.5 0.55 0.6 0.65
L

Select Range of L

ect to parameters L and h (with b = 2.0).



Table 3
Parameter estimation using RBM-GA and simulated measurement with different
noise levels of contamination: ltrue � ltest�1 = (2.4,0.65,25�)

ltrue � (b,L,h) Search range: ±20%

Results Errors (%)

Noise free
2.4 2.3995 0.021
0.65 0.6498 0.031
25� 25.0650 �0.260

1% noise
2.4 2.4064 �0.267
0.65 0.6521 �0.323
25� 24.6616 1.354

3% noise
2.4 2.4195 �0.813
0.65 0.6562 �0.954
25� 23.9661 4.136

5% noise
2.4 2.4320 �1.333
0.65 0.6598 �1.508
25� 23.3841 6.464

Table 4
Parameter estimation using RBM-GA and simulated measurement with different
noise levels of contamination: ltrue � ltest�2 = (2.4,0.6, 20�)

ltrue � (b,L,h) Search range: ±20%

Results Errors (%)

Noise free
2.4 2.3995 0.021
0.6 0.5997 0.05
20� 20.0465 �0.233

1% noise
2.4 2.4061 �0.254
0.6 0.6016 �0.268
20� 19.8173 0.0914

3% noise
2.4 2.4189 �0.788
0.6 0.6050 �0.833
20� 19.4226 2.887

5% noise
2.4 2.4313 �1.304
0.6 0.6077 �1.283
20� 19.1067 4.467

Table 5
True parameters, estimated parameters by RBM-GA, number of generation in the GA
search and RBM calls (noise level: 1%)

ltrue l* (estimated parameter) Generations Total RBM calls

(2.4,0.65,25�) (2.4064,0.6521, 24.6616�) 22 68,606
(2.4,0.6,20�) (2.4061,0.6016,19.8173�) 25 74,509

Table 6
Comparison of computational time for inverse problem using FE and RBM as forward
solvers

l ‘‘m”
(objective
function
calls)

CPU time for each
forward solver call

Total computation time

ltest�1 68,606 tFEM (s) 2.48 m � tFEM 47.26 (h)
tRBM(online)

(s)
5.40 � 10�3 m � tRBM(online) 6.17

(min)

ltest�2 74,509 tFEM (s) 2.48 m � tFEM 51.33 (h)
tRBM(online)

(s)
5.40 � 10�3 m � tRBM(online) 6.71

(min)

Table 7
Time-saving by using RBM-GA compared to FEM-GA

tRBM(online) (s) tFEM (s) a

5.40 � 10�3 2483.83 � 10�3 4.5997 � 102
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sufficient for real engineering applications, as the engineers often
have certain understanding or experience on the structure. For
these two cases of parameter identification, the number of GA gen-
erations and the total calls of forward RBM solver are provided in
Table 5.

The efficiency of the present inverse approach is then examined.
The computational time for ‘‘on-line” inverse parameter estimation
of ltest�1 and ltest�2 are listed in Table 6. It is found that the CPU
time for the parameter estimation using RBM is much shorter than
that of using FEM solver.

The CPU time-saving factor a for the inverse problem can be
estimated by

a ¼ tFEM

tRBMðonlineÞ
; ð19Þ

where tFEM is CPU time of each FEM forward call, and tRBM(online) is
CPU time of each RBM forward call.

Table 7 shows the CPU time-saving for our inverse parameter
estimation. The computational saving factor a is as large as 460.
It implies that the present RBM-GA approach can solve the param-
eter estimation problem with one 460th computational effort com-
pared to the conventional FEM-GA approach.

4. Conclusion

A rapid RBM-GA approach has been proposed to solve inverse
problems of parameter identification for solid and structure sys-
tems. We have successfully performed crack detection problem.
The proposed RBM-GA approach systematically consists of three
stages: constructing fast forward RBM model, performing sensitiv-
ity analysis and finally determining the parameter using GA. The
example has shown that (1) the RBM-GA approach is more than
400 times faster than the usual FEM-GA approach and (2) the in-
verse analysis solution is reliable due to the explicit sensitivity
analysis performed using the real-time RBM model.
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